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SUMMARY 
A through-flow (hub-to-shroud) truly inverse method is proposed and described in this paper. It uses as 
a initial design specification, an imposition of mean swirl, i.e. radius times mean tangential velocity, given 
throughout the meridional section of the turbomachine. In the present implementation, it is assumed that 
the fluid is invsicid, incompressible and irrotational at inlet and the blades are supposed to have zero 
thickness. Only blade rows that impart to the fluid a constant work along the span will be considered. 

An application of this procedure to design the rotor of a mixed-flow pump will be described in detail. The 
strategy used to find a suitable mean swirl distribution and the other design inputs is also described. The 
final blade shape and pressure distributions on the blade surface are presented, showing that it is possible to 
obtain feasible designs using this technique. Another advantage of this technique is the fact that it does not 
require large amounts of CPU time. 
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1. INTRODUCTION AND LITERATURE SURVEY 

A large majority of pumps are designed by using very simple and rudimentary one-dimensional 
considerations concerning the velocity triangles, which allow the calculation of the evolution of 
the blade angle along the passage, see, e.g. References 1 and 2. These methods are so easy that they 
can be carried out using only hand calculations and simple graphical processes. 

Althouth some pumps are still being calculated using hand calculations, the above one- 
dimensional procedure can and has been programmed as computer codes which are being used 
by the most important pump manufacturers. The more radial the blade passage is, the better are 
the results obtained with these techniques. However, for mixed-flow pumps, the velocity triangles 
vary appreciably along the span, so that the above methodology is not good enough. In order to 
take into account this effect in some way, designers usually split the flow passage in several 
channels along the span, applying the above considerations to each one. 

When the pump designs involve some responsibility, the above step is followed by a verification 
using a direct code which is run with the geometry arrived at previously. Before reaching the final 
design, several iterations following the above steps are usually required. 

This complete process can be time-consuming, so that one is left wondering whether it could be 
improved. One possible way to achieve this could be by using inverse methods, enabling the 
achievement of the blade row layout in a more direct form, in one single step. Among inverse 
methods, two-dimensional techniques are the most frequently used and the ones that require less 
CPU time. These two-dimensional inverse methods can be classified into two main groups, 
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according to the approximations used when looking for the solution to the blade design. The first 
sort of approximations give rise to blade-to-blade methods since the calculations are done in the 
blade-to-blade plane. These methods are popular among designers of axial turbomachinery, but 
it did not attract much attention among designers of radial turbomachinery. The reason may be 
connected to the fact that the flow passages are more compIicated and there are significant 
changes in radius. 

The other way of tackling the solution consists of working in the hub-to-shroud plane (i.e. in 
the meridional plane), giving rise to what we could call hub-to-shroud (or through-flow) methods. 
In this sort of approach, the flow is supposed to be axisymmetric, an approximation that can be 
interpreted as giving the mean flow through the turbomachine. This sort of approach seems more 
popular among radial turbomachinery designers. In fact, one can find examples of this kind of 
procedure as early as 1955, when Smith and Hamrick3 described some work applied to the 
redesign of a centrifugal compressor, using a hub-to-shroud method. In this instance the blade 
shape was kept fixed and given as input, while the shroud contour was altered and evolved as 
a result of the calculations. The centrifugal compressors described by Smith and Hamrick3 were 
built and tested, the experimental results being presented by Osborn et al? The experimental 
results show that this technique produced significant improvements in the overall efficiency and 
peak pressure ratio. 

A different strategy was followed by Jansen and Kir~chner,~ who again described the applica- 
tion of an inverse technique to the design of centrifugal compressors. Contrary to the previous 
example, the meridional geometry (hub and shroud contours) of the machine is supposed known 
and given as input. The other inputs consist of a suitable normal blade thickness and the desired 
velocity loading (difference in velocity across the blade) at hub, mid-span and shroud as a function 
of distance along the camberline. As a result of the calculations, the blade shape was obtained. 
This paper presents some experimental evidence suggesting that the procedure gives reliable 
results when the flow is attached. 

The method proposed in the present work has got some similarities to that of Jansen and 
Kirschner’ in the sense that it is also a hub-to-shroud inverse technique that assumes the 
meridional geometry to be known and calculates the blade shape that will satisfy some flow-field 
conditions, given as input to the procedure. The input design specification used here is a mean 
swirl (radius times mean tangential velocity r r o )  distribution given throughout the meridional 
section. This design specification is somewhat unusual, but a suggestion in this direction can 
already be found in the work of W U , ~  and it is ideally suited to the design of radial turbo- 
machinery as discussed in Reference 7. In fact, the work of B o r g e ~ , ~  which presents a 
three-dimensional inverse method using a mean swirl specification, shows that the mean swirl 
specification is related to the way the work is imparted to the fluid as it passes through the blade 
row. In other words, the mean swirl can be related to the blade loading across the blades. 
Reference 8 also discusses the use of a mean swirl imposition and derives the equations to be used 
in the present work. Nevertheless, Reference 8 does not present any practical examples of 
application of the equations. 

2. DESCRIPTION OF THE DESIGN METHOD 

Throughout this work we will use a right-handed cylindrical polar co-ordinate system defined by 
(r, 8, z), where r is the radius, 8 the angular co-ordinate and z is the axial distance. In addition, we 
will use an auxiliary co-ordinate a, defined by 

(1) a = e -j-(r, z), 
wheref(r, z) is the angular co-ordinate of a point on the blade camber surface. This variable a can 
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be interpreted as a sort of helical angular co-ordinate aligned with the blade, so that when 

2n a=m-, 
B 

with m an integer (m=. . ., - l , O ,  1 , 2 , 3 , .  . .) and B equal to the number of blades of the 
turbomachine, we are on a blade surface (equation (2) describes the blade shape). 

2.1. Velocity $ow field 

Since it was intended to apply this method to design pumps, it was assumed that the fluid was 
inviscid and incompressible and, for simplicity, the blade thickness is not considered in this 
procedure. 

In agreement with the through-flow approximation, the flow through the turbomachine will be 
assumed axisymmetric even in the blade region. This mean velocity field will be calculated using 
the streamfunction concept and the value of the mean vorticity. Indeed, since the vorticity field is 
solenoidal, it can be written as the cross product of two gradients of scalar functions. One of these 
scalar functions may be a according to the fact that all the vorticity is confined to the blades. In 
fact, if we suppose the far upstream velocity is uniform (an approximation quite frequent), we can 
say the flow is irrotational at inlet. Concentrating in designs that execute constant work along the 
span, it is concluded that the flow must remain everywhere irrotational according to Kelvin’s 
theorem. So, if there is any vorticity at all, it must be bound to the blade surfaces, justifying the 
statement just made. The other scalar function in the expression for the vorticity turns out to be 
the mean swirl as is shown in B ~ r g e s . ~  Therefore, the expression for the mean vorticity, fi is 

n = V r V ,  x vu (3) 
and now that the mean vorticity is known, the corresponding velocity field can easily be 
calculated. It is indeed known that the mean vorticity is the curl of the mean velocity v, or 

n = v x x .  (4) 

Equating the &component of equations (3) and (4), the following equation is obtained: 

relating the velocity field to the blade shape,f, and the mean swirl rvo .  Besides this equation, the 
velocity field must satisfy the continuity equation. In order to achieve this we introduce the 
concept of a streamfunction defined by 

so that this definition satisfies identically the continuity equation for incompressible flow, i.e. 
V - v = 0. The actual value of + appearing in definitions (6a) and (6b) is going to be determined 
substituting (6a) and (6b) in equation (5). In this way we arrive at 
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For the resolution of this equation, it is necessary to specify a complete set of boundary 
conditions. The boundary condition to use along the endwalls (hub and shroud) is the one that 
states that there is no flow through the solid walls. Using the streamfunction concept, this fact is 
expressed as 

or, in other words, the hub and shroud must be streamlines of the flow. 

can write 

I/I = Const. (8) 

Far upstream, we know the mean velocity vector, 8- since it is given as input. Therefore we 

where s is distance along the far upstream boundary and n is the unitary vector perpendicular to 
it. This expression enables us to calculate the values of I/I along the far upstream boundary, using 
a simple numerical integration. At the far downstream boundary, a similar expression applies 
since the velocity there is uniform because the flow is irrotational at inlet and the blade row is 
supposed to execute constant work along the span. In this way, the complete set of boundary 
conditions is obtained. 

The partial differential equation (7) was solved using finite difference techniques. As a typical 
mixed-flow pump has a meridional section with complicated geometry bounded by curved 
boundaries (hub and shroud profiles), it was decided to use a transformation of co-ordinates to 
body-fitted curvilinear co- ordinate^.^ Since this co-ordinate system should be easy to generate 
and require little computational time, it was decided to use an algebraic transformation. For this 
kind of transformation of co-ordinates, mesh points are distributed along quasi-orthogonals and 
quasi-streamlines. Figure 2 shows the grid used in the calculations to be discussed later on. 

Equation (7) was discretized using second-order-accurate central difference formulae, obtain- 
ing a nine-point difference star. The resulting finite difference equations were solved by a relax- 
ation method. In the present case, a Gauss-Seidel relaxation scheme was used, implemented in 
conjunction with a multi-grid technique in order to accelerate the convergence rate of the 
solution. A good description of multi-grid methods can be found in Reference 10, and, in fact, the 
relaxation subroutines used in our program are a slightly modified version of the ones presented 
in Reference 10. 

2.2. Equation for the determination of the blade shape 

After calculating the velocity field using the information presented in the previous subsection, it 
is necessary to evaluate the blade geometry. That is done by requiring the blade to be tangent to 
the velocity vector. This condition can be expressed as 

w - va =o, (10) 
where W is the local relative velocity, W = 
expression is obtained: 

- U. Expanding equation (lo), the following 

- af - af rVo v -+ v -=---m 
“ d z  ‘ar  r z  ’ 

wherefis the angular co-ordinate of the blade and o is the rotational speed of the blade row. 
and 
Equation (1 1) is a first-order partial differential equation with characteristic lines coincident 

with the meridional projection of the streamlines. In order to integrate this differential equation, 

are the mean axial and radial velocities, respectively. 



THROUGH-FLOW INVERSE METHOD 1101 

some initial data must be specified along a line roughly perpendicular to these characteristic lines 
and extending from hub to shroud. This initial data onfwill be called the stacking condition of 
the blade. In our method this stacking condition is implemented by giving, as input, the values of 
the blade angular co-ordinate 1; along a quasi-orthogonal, e.g. at the leading edge. 

After the stacking condition is specified, we can integrate equation (1 l), since all the velocities 
that appear in it are known from the previous iteration. Integration of equation (1 1) was done 
using finite difference methods. More specifically, an Euler's modified method' ' was used. This is 
an implicit numerical scheme that has a truncation error of second order in the mesh size and is 
consistent and stable. 

For some of the cases considered, namely turbomachines with blades covering a large 
tangential extent such as the one to be discussed, it was found convenient to use some underelaxa- 
tion in the process of updating the blade geometry. This was done according to the expression 

f e w  =fold -k RF * (few -fold), (12) 

where R F  is the relaxation factor,f,,, is the new blade co-ordinate, solution of equation (1 l), and 
fold is the blade co-ordinate used in the last iteration. 

2.3. Estimation of blade surface pressures 

One result that is important in any design method is the value of pressure on the suction and 
pressure surfaces of the blade, for judging whether the pressure distribution is adequate or not. In 
order to calculate these values starting from the axisymmetric solution, it is necessary to estimate 
the blade surface velocities using the mean values known. To do this we begin by determining the 
velocity jump across the blades (W' - W - )  which is given by7 

where, for a pump, W +  is the relative velocity at the pressure surface and W -  is the relative 
velocity at the suction surface. This expression is physically plausible as it gives a jump in velocity 
which lies on the blade since it is normal to Vcr (a vector itself normal to the blade). In addition, we 
would expect the jump to be normal to the vorticity vector, (2n/B)(Vrv0 x Va), lying in the blade. 
Knowing the velocity jump and assuming the velocity profile is linear between suction and 
pressure surfaces (a frequent approximation in hub-to-shroud methods, see Reference 12) it is 
possible to estimate the velocities at the suction and pressure surfaces. Indeed, their values are 
going to be equal to the mean velocity (solution of the axisymmetric problem) plus or minus 
one-half the velocity jump. Afterwards, using the fact that the flow is irrotational at inlet and 
applying Bernoulli's equation, the expression for the difference in pressure across the blades is 
obtained. The final expression is7 

2 x  - - 
p +  - p -  = B p W . V r V o  

where p +  is the pressure at the pressure surface, p -  the pressure at the suction surface and p is the 
fluid density. W is known from the velocity field calculation so that all the terms in the right-hand 
side of equation (14) are known, enabling the estimation of the pressure loading across the blades. 

2.4. Flowchart 

To end Section 2, we would like to draw the attention of the reader to the fact that the vorticity 
depends on the blade shape, f, which in its turn is an outcome of the calculations. So, the 
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calculations must be iterated until convergence is obtained. This is done according to the 
following flowchart: 

(i) input of initial data-specified values of rVB, definition of meridional section and body- 
fitted curvilinear co-ordinate system and all the relevant parameters; 

(ii) estimation of a first guess forf; assuming that the mean velocity is uniform along the 
quasi-orthogonals; 

(iii) using the input values of mean swirl, rVe, and the values of blade shape, f, from last 
iteration, calculate the mean velocity field (solution of equation (7)); 

(iv) update the blade shape, f; by integration of equation (1 1) and using underelaxation as 
defined in equation (12); 

(v) if the solution is converged output the blade shape,f; and other relevant results. Otherwise 
go back to step (iii) and initiate a new iteration. 

This flowchart was implemented as a FORTRAN computer code and applied to the design of 
the impeller of a mixed-flow pump. 

3. DISCUSSION OF APPLICATION TO A MIXED-FLOW PUMP 

In order to show the potentialities of the method, it was decided to apply it to the design of 
a mixed-flow pump. The chosen pump was based on a real machine which had as nominal 
conditions, a value of 28 m for the head, H, a nominal volume flow, Q, of 600 m3/h and 
a rotational speed of 1450 rpm. These values give a non-dimensional specific speed parameter 
equal to 0.919. The rotor has eight blades and a tip diameter equal to 320 mm. This value will be 
used to non-dimensionalize all the linear dimensions and the velocities will be made non- 
dimensional by using the transport blade-tip velocity, mitip (its value is 24.3 m/s). 

The meridional geometry used in the calculations is based on an existing pump (with minor 
alterations), designed by a Portuguese pump manufacturer using hand calculations and graphical 
processes. The final meridional shape used is defined in Figure 1. A grid formed by 145 
quasi-orthogonals and 57 quasi-streamlines was fitted to this meridional section, there being in 
the blade region, a total of 61 x 57 points. Figure 2 shows every other line of the grid used. As can 
be seen, a region upstream and downstream of the blade zone was considered in the calculations. 

An important input to the present inverse method is the specification of mean swirl, r Ve. As it is 
supposed that the pump accepts the flow with no swirl, the value of rv6 along the entire leading 
edge is considered equal to zero. At the trailing edge the value was also considered constant in 
order to obtain a design that executes constant work along the span. The necessary value of r Ve at 
the trailing edge depends on the work transfer per unit mass of fluid desired for the rotor, which is 
a value determined by the desired head and an assumed value of efficiency (in our case considered 
equal to 0.86). The value of rV0 used at the trailing edge is 0-5411 

Another restriction was imposed on the derivatives of the mean swirl at the leading and trailing 
edges, namely, we forced there a zero derivative along the quasi-streamlines. This was done in 
order to obtain a zero pressure loading at the trailing edge (as is required by the 
Kutta-Joukowski condition), and at the leading edge. The equivalence between a zero derivative 
of the mean swirl and zero pressure loading can be seen from expression (14) which shows that the 
pressure loading depends on the gradient of mean swirl, being zero where the gradient of rV6 is 
zero, as it is the case at the leading and trailing edges. 

This close equivalence between derivatives of mean swirl and pressure loading across the blade 
was one of the factors used when choosing the input mean swirl, T V ~ ,  along the entire meridional 
section, and whose contours are presented in Figure 3. The other factor considered was the 
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Figure 1. Definition of meridional geometry (dimensions in mm) 

far-downstream boundary 

Figure 2. Grid used in the meridional plane 
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Figure 3. Contours of the input mean-swirl distribution (defined as rvB/(rtiPULip)) 

attempt to avoid a blade shape too twisted which would be difficult to manufacture. These two 
factors were exactly the same guidelines advanced and discussed in Reference 7 when choosing 
the mean swirl for a completely different turbomachine, a radial inflow turbine. 

Recalling briefly the arguments advanced in Reference 7 and which are sufficiently general to 
apply to the present situation, it is evident from expression (14) that the pressure blade loading is 
proportional to the product of the modulus of the relative velocity and the value of the derivative 
of TVe along the meridional projection of the flow streamlines, or 

where 1 W, 1 is the' modulus of the meridional projection of the relative velocity and rn is distance 
along the meridional projection of the streamlines. In a well designed machine, IW,l does not 
vary abruptly and the streamlines have a direction close to the quasi-streamlines. Therefore, 
equation (15) implies that the pressure blade loading is mainly influenced by the value of the 
derivative of T V #  along the quasi-streamlines, which is a value known at the start of the 
calculations, and so can be controlled. In this way, if it is desired to design a blade with a big 
loading near the leading edge, then the derivatives of r Ve along the quasi-streamlines should have 
large values near the leading edge. In addition, if one wishes to obtain a pressure loading with 
a smooth evolution, then the derivatives of TVe should be watched with special care, specifying 
them with a variation from the leading to the trailing edge as gradual and smooth as possible. 
From the point of view of the pressure loading, the most unfavourable situation is along the 
shroud where the velocities and decelerations are higher, so that the derivatives there should have 
a smooth variation. 
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The other argument that one should bear in mind when choosing the input mean swirl schedule 
is the one connected with the amount of blade twist. In order to clearly understand this argument 
it is important to rewrite equation (1 1) along the meridional projection of a streamline, obtaining 

where a and b are two arbitrary points on the same streamlineJis the angular co-ordinate of the 
blade, vm is the mean velocity in the meridional plane and m is the distance along the meridional 
projection of the streamline. If one wishes to control the total variation in the angular co-ordinate 
of the blade,fa-fb, it is convenient to avoid high values for the expression under the integral sign 
in equation (16). This can be achieved if one specifies the value of rV0 so that We has small values, 
or in other words, if one specifies r vB so that the value of closely follows the'local value of the 
transport velocity, or. Taking note that W e  is divided by r vm in the integrand of equation (16), one 
can conclude that the use of small values for W e  is more important and critical where the radius 
and the meridional velocity v, present smaller values. So, from the point of view of highly twisted 
blades, the most critical streamsurface is the hub, not only because there the radius and 
meridional velocity take the lower values in the machine, but also because the meridional flow 
path is usually longer along the hub than anywhere else in the machine. 

The next set of four figures is presented to demonstrate that the above two points were taken 
into consideration. Indeed, Figure 4 gives the evolution of the input rVg on the hub and the 
shroud. It is clearly seen that on the shroud the evolution of rVe is quite gradual and smooth, 
while at the hub the opposite happens. 

Figure 5 shows, on the same graph, the values of or and the specified values 6 at the hub. Here 
it is evident that, on the hub, Ve has an evolution which is almost parallel to wr, for most of the 
flow path and without much consideration in the direction of obtaining smooth derivatives. This 
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Figure 4. Input mean swirl distribution at hub and shroud 
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Figure 5. Mean tangential velocity and blade speed at hub 

was done so that W e  at the hub presented small and approximately constant values along most of 
the blade, leading to a reasonable overall change in the values of blade angular co-ordinate,f: 

From Figure 6, it can be seen that the contrary happens on the shroud, where Ve was chosen to 
have a smooth variation rather than following the local value of blade speed, or. In fact, the main 
concern when specifying the mean swirl at the shroud was to obtain an adequate pressure 
distribution and not to control the overall variation in the blade angular co-ordinate,$ 

The above ideas are corroborated by Figure 7, where the derivatives of rV0 along the 
quasi-streamlines for the hub and the shroud are presented. As can be clearly seen, the derivatives 
at the shroud present a smooth variation while the same does not apply at the hub, where a more 
abrupt change of the 

derivatives and pressure loading, one can conclude 
that the present design presents a large loading near the leading edge at the shroud streamsurface, 
while at the hub streamsurface, the blade loading is more evenly spread. However, one should 
point out that, at the hub, the derivative is zero for approximately the last 15% of the meridional 
flow path. This indicates that there will be a small pressure loading along the last portion of the 
blade at the hub, suggesting that perhaps one could use a shorter flow path there. This idea would 
entail an alteration of the trailing edge shape (using a trailing edge inclined to the axis, instead of 
parallel) and so, was not pursued further. 

The inverse computer code was run, using the input described above together with a stacking 
condition imposed at the trailing edge and which consists of a linear variation of f between the 
value of 0.0 rad (at the hub) and 0.10 rad (at the shroud). As a result, the blade shape described in 
the next figure was obtained. Since it is difficult to visualize the three-dimensional geometry of the 
blade, it was decided to present the blade geometry in Figure 8 as a view of two consecutive 
blades, as would be seen by an observer looking in the direction of the impeller axis. The blade 

derivatives can be detected. 
Using the close relationship between r 
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Figure 8. Blade projection along the axis 

obtained seems typical of a pump impeller and no particular problems are envisaged during its 
manufacture, since it is not a highly twisted blade. 

Figure 9 presents the estimated pressure distribution on hub and shroud, assuming a linear 
variation of the velocity from suction to pressure surfaces and using the procedure already 
discussed in Subsection 2.3. The pressure coefficient, C,, used in this plot is defined as 

C,= ($y - 1, 

where Wref is a reference relative velocity, which is equal to 0308 wrtip in the present case. Note 
that the loading has a behaviour similar to the evolution of the derivatives of rvB along the 
quasi-streamlines, shown in Figure 7, bearing out the comments made above, concerning the 
close relationship between derivatives of T V e  and pressure loading. For example, it is seen that, at 
the hub, the pressure loading varies more abruptly than at the shroud, and along the last 15% of 
the flow path at the hub, the pressure loading is zero as was already expected from the values 
of the derivatives of mean swirl. It should also be remarked that the distribution of pressure on 
the blade surfaces at the hub is not ideal since its variation is not smooth and presents some 
unnecessary decelerations. However, the optimization of the pressure distribution would entail 
changes in the meridional section of the machine, and so was not tried in this work. 

The evolution of the maximum absolute error in the blade angular co-ordinate,f; between two 
successive iterations, as a function of the iteration number is given in Figure 10 for the present 
case where a relaxation factor varying between 0 5  and 0 1 5  was used. It is seen that the 
convergence is fairly rapid requiring 45 iterations, and is monotonic for the most part. 

As already mentioned, each global iteration required the evaluation of the mean velocity field 
and blade shape. The most demanding task between these two calculations is the determination 
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of the velocity field. For the case being discussed, the amount of computational work required for 
the solution of the velocity field (solution of equation (7), using a relaxation method as described 
in Subsection 2.1) is roughly equivalent to 28 Gauss-Seidel sweeps, during the first few global 
iterations. This amount of work decreased steadily as the computation evolved since the results 
from the previous mean velocity field calculation were used as an initial approximation in the 
following iteration, providing an increasingly accurate first approximation as convergence is 
achieved. 

In order to study the influence of the grid size, this example was run using a finer and coarser 
mesh. The finer grid is defined by 289 quasi-orthogonals and 113 quasi-streamlines, while the 
coarser grid has 73 quasi-orthogonals by 29 quasi-streamlines. The size of the grids was chosen so 
that the number of quasi-streamlines and quasi-orthogonals was doubled twice, first as one 
moves from the coarser grid (73 x 29) to the standard mesh (145 x 57) and then again as one goes 
from the standard grid to the finer one (289 x 113). The results showed a maximum absolute 
difference in the blade angular co-ordinate, f; between the coarser and standard grids equal to 
5.65 x rad, while same difference between the standard and finer 'mesh was reduced to 
1-37 x low3 rad. Bearing in mind that the overall variation in the blade angular co-ordinate is 
approximately 2-32 rad, it is seen that the differences between the results obtained with the three 
grids are very small. In fact, these differences are so small that they cannot be distinguished in 
a plot comparing the blade shapes computed with the different grids. Therefore, instead of 
presenting such a plot, it was decided to compare the estimated pressure distributions calculated 
with the three grids, in Figure 11. It is clearly seen that the variations between the grids are quite 
small and confined to regions where there is a sudden change of blade pressure loading. Based 
upon these results it is concluded that, for the standard grid used in the present study, the results 
depend little on the grid size. 
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Figure 11. Comparison of results obtained with the different grids 
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One advantage of the present method lies in the fact that it is quite rapid, requiring small 
amounts of CPU time. In fact, the present run required 1 min 57 s of CPU time in a VAX 3400 
computer, including the pre-processing phase. Since it is computationally so cheap, several 
different input mean swirl distributions can be scanned quickly, enabling the choice of the most 
appropriate mean swirl schedule. 

A second example of blade design, using a mean swirl distribution chosen among the several 
input t V 0  distributions scanned, will be presented in the following, in order to clarify the close 
relationship between the mean swirl specification and the results for the blade shape and pressure 
distribution. 

The input mean swirl distribution used in this second run is defined in Figure 12, which shows 
the specified r G  values at hub and shroud, and in Figure 13 which gives the evolution of the 
derivatives of r e  along the quasi-streamlines at hub and shroud. These plots should be compared 
with the corresponding figures for the first example, which are presented as Figures 4 and 7, 
respectively. This comparison indicates that this second r Ve distribution has a more gradual 
variation than the previous input mean swirl, especially at the hub. In fact, this case does not show 
a region where the values oft Ve are constant or, in other words, where the Ve derivatives are zero, 
as the previous case showed near the trailing edge. Another difference at hub lies in the fact that 
this second example has the region with higher derivatives closer to the leading edge which is 
exactly the opposite to what happened in the first example. At the shroud, the overall evolution of 
the mean swirl schedule is similar in both cases. However, the maximum values of the rV, 
derivatives are smaller, both at shroud and hub, for the second distribution being considered. 

Some of the results obtained with this mean swirl specification, maintaining all the other inputs 
equal, are displayed in Figure 14 which presents the blade shape, and in Figure 15 which shows 
the estimated blade pressure distributions at hub and shroud. These two graphs should be 
compared with the corresponding plots for the first run, which are presented as Figures 8 and 9, 
respectively. 

0.60 1 
0.54 

0.48 

0.42 

0.36 
3 
( 0.30 

0.24 
12 

Hub 

Shmud 

::::py, , , 1 
0.06 

0.00 
0.0 0.2 0.4 0.6 0.8 1 .o 

Percent Meridionol Distance 

Figure 12. Input mean swirl distribution at hub and shroud (second example) 
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Figure 13. Derivatives of the input mean-swirl distribution (second example) 
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Figure 15. Pressure distribution at hub and shroud (second example) 

It can be seen in Figure 14 that the overall variation in blade co-ordinate angle is greater for 
this last case, taking the value of 2.44 rad instead of 2.32 rad for the first example. In addition, the 
blade being discussed presents a more twisted shape. Due to the conjunction of these two aspects, 
it is believed that this last blade would be more difficult to manufacture accurately than the other 
one. It should also be remarked that this example serves to demonstrate that a smoother rV6 
distribution does not inevitably lead to a less twisted blade. 

The figure with the estimated blade pressure distributions shows that the blade pressure 
loading has again an overall evolution analogous to the one displayed by the ?-v@ derivatives. 
Comparing this result with the blade pressure distribution for the first example, it is seen that the 
biggest differences are found at hub, as one would expect from the fact that the more pronounced 
changes in the IF ,  derivatives were introduced at hub. Note also that this last design shows 
a more uniform blade pressure loading than the first example which had a zone of higher loading 
towards the end of the blade, at the hub. 

4. CONCLUSIONS 

A through-flow (hub-to-shroud) inverse method was proposed and implemented as a computer 
code. In the present implementation, the flow is assumed incompressible, irrotational at inlet and 
the blade thickness was not considered during the calculations. The necessary equations are 
presented and, as an example of a possible application, the inverse method was used to redesign 
the rotor of a mixed-flow pump. 

The present method uses as an input specification the value of mean swirl, ?-VO. This input 
specification was chosen using a reasoning similar to that used in Reference 7. This is remarkable, 
since the turbomachine designed in Reference 7 was a radial-inflow turbine, and indicates that the 
strategy developed there is quite general, being able to cope with radically different machines. 
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Briefly, this strategy consists in using the input mean swirl to control the pressure loading on the 
blades and the overall variation in the angular co-ordinate of the blade,J: 

One advantage of the present technique is the fact that it requires small amounts of CPU time. 
So it is a convenient tool to scan quickly and inexpensively several different input mean swirl 
distributions, in order to find the most appropriate one. The results for two different input rV0 
specifications are presented. 

This work also shows that further research should be done in order to obtain reasonable 
pressure distributions on the blade surfaces. In fact, the designs presented here have pressure 
distributions on the hub which are not the ideals ones. The optimization of the pressure 
distribution will probably involve some changes in the meridional section (hub and shroud 
contours). 
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